HW \#3

Jonathan Leake
CO 739 - S23

1 Non-homogeneous polynomials and capacity bounds

We first define a non-homogeneous version of Lorentzian polynomials.
Definition 1.1. Given $p \in \mathbb{R} \geq 0\left[x_{1}, \ldots, x_{n}\right]$, we say p is completely/strongly log-concave if for all $k \geq 0$ and all $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}_{\geq 0}^{n}$ we have that $D_{\boldsymbol{v}_{1}} \cdots D_{\boldsymbol{v}_{k}} p$ is log-concave (or identically zero) in the strict positive orthant.

Recall we define a linear operator N on polynomials via $N\left[\boldsymbol{x}^{\kappa}\right]=\frac{x_{1}^{\kappa_{1}} \ldots x_{n}^{\kappa n}}{\kappa_{1}!\cdots \kappa_{n}!}$.
Definition 1.2. Given $p \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$, we say p is $\mathbf{D L}$ if $N[p]$ is completely log-concave.
Note that by the previous homework, Lorentzian polynomials are completely/strongly log-concave, and DL polynomials in the original homogeneous sense are DL.

1.1 Exercises

1. Prove that given a matrix $A \in \mathbb{R}_{\geq 0}^{n \times m}$, if p is completely log-concave then so is $p(A \boldsymbol{x})$.
2. Let $p(\boldsymbol{x})=\sum_{k=0}^{d} p_{k}(\boldsymbol{x})$ be such that p_{k} is k-homogeneous. Prove that p is completely log-concave if and only if

$$
q(\boldsymbol{x})=\sum_{k=0}^{d} \frac{y^{d-k}}{(d-k)!} \cdot p_{k}(\boldsymbol{x})
$$

is completely log-concave. Note that this is equivalent to saying that p is DL if and only if its homogenization is DL.
3. Given an example of a completely log-concave polynomial such that its homogenization is not completely log-concave.
4. Finish the proof started in class that the operation $p(\boldsymbol{x}) \mapsto p\left(x_{1}, x_{1}, x_{3}, \ldots, x_{n}\right)$ preserves DL. (Note that by the above exercises, you may WLOG assume p is homogeneous DL.) Show that this implies that DL is preserved under products, even in the non-homogeneous case. (Hint: Recall the proof in the homogeneous case from the lecture.)
5. Using the previous exercises and results from the lecture, prove that completely log-concave polynomials are closed under taking products.
6. Finish the proof started in class that the homogeneous independent set generating polynomial of a matroid M,

$$
q_{M}(\boldsymbol{x}, y):=\sum_{S \in \mathcal{I}(M)} x^{S} y^{n-|S|},
$$

is Lorentzian. Here, $\mathcal{I}(M)$ is the set of all independent sets of M and n is the size of the ground set of M (i.e., the number of x variables). (Note that we did not have to divide by factorials here when homogenizing. This is actually a bit of a mystery, since in general the factorials are required.)
7. Suppose $p(x, z)=a x z+b x+c z+d \in \mathbb{R}_{\geq 0}[x, z]$ is completely log-concave. Prove that for any $\alpha \in[0,1]$ we have

$$
b+c \geq \frac{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}{1+\alpha(1-\alpha)} \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(p)
$$

(Hint: Follow the proof of the analogous result for real stable p from the lecture notes, altering the proof where needed.)
8. Let $p, q \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$ be multiaffine completely log-concave polynomials. Prove that for any $\boldsymbol{\alpha} \in[0,1]^{n}$ we have

$$
\langle p, q\rangle^{\mathbf{1}} \geq\left[\prod_{i=1}^{n} \frac{\alpha_{i}^{\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}}}{1+\alpha_{i}\left(1-\alpha_{i}\right)}\right] \cdot \operatorname{Cap}_{\boldsymbol{\alpha}}(p) \operatorname{Cap}_{\mathbf{1}-\boldsymbol{\alpha}}(q)
$$

Note that $1+t(1-t) \leq e^{t}$, so that this bound differs from the real stable bound by at most a simply exponential factor.
9. Prove a linear preservers theorem for completely log-concave polynomials, and using the previous exercise, prove a capacity bounds theorem for linear preservers of completely log-concave polynomials. (Hint: The proofs should be very similar to the real stable case.)
10. Generalize the previous exercises to non-multiaffine polynomials, if possible. (Note: I have not actually done this myself, and I am not 100% sure it is possible. But I think it should be straightforward.)
11. Gurvits' conjecture (currently open): Given d-homogeneous real stable (or even completely logconcave possibly) polynomials $p, q \in \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$ and any $\boldsymbol{\alpha} \in \mathbb{R}_{\geq 0}^{n}$ such that $\|\boldsymbol{\alpha}\|_{1}=d$, show (or find a counterexample) that

$$
\sum_{\|\boldsymbol{\kappa}\|_{1}=d}\binom{d}{\boldsymbol{\kappa}}^{-1} p_{\boldsymbol{\kappa}} q_{\boldsymbol{\kappa}} \geq \frac{\boldsymbol{\alpha}^{\boldsymbol{\alpha}}}{d^{d}} \operatorname{Cap}_{\boldsymbol{\alpha}}(p) \operatorname{Cap}_{\boldsymbol{\alpha}}(q)
$$

Here, $\binom{d}{\kappa}$ denotes the multinomial coefficient, and the left-hand side of the inequality is the unique (up to scalar) SU_{n}-invariant inner product on polynomials. (Note: In the case that $q(x)=x_{1} x_{2} \cdots x_{n}$ with $d=n$, the left-hand side is $\frac{p_{1}}{d!}$ and for $\boldsymbol{\alpha}=\mathbf{1}$ the right-hand side is $\frac{1}{d^{d}} \operatorname{Cap}_{\boldsymbol{\alpha}}(p)$, so that this recovers Gurvits' theorem for the permanent.)

