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1 Interlacing polynomials and the BB characterization

Definition 1.1. Given a real-rooted polynomial f ∈ R[t], let λ(f) denote the non-increasing sequence of
the roots of f . Given f, g ∈ R[t] with positive leading coefficients, we say f ≪ g if one of the following holds:

• λd(f) ≤ λd(g) ≤ λd−1(f) ≤ λd−1(g) ≤ · · · ≤ λ1(f) ≤ λ1(g) with deg(f) = deg(g) = d

• λd(g) ≤ λd−1(f) ≤ λd−1(g) ≤ · · · ≤ λ1(f) ≤ λ1(g) with deg(f) + 1 = deg(g) = d

We also say that f interlaces g. Further, we allow negative leading coefficients by saying that f ≪ g if and
only if g ≪ −f . Finally, we say that f ≪ g strictly (or f interlaces g strictly) if all inequalities above are
strict.

1.1 Exercises

You may consult [Wag11] for hints on the exercises in this section, but try first to solve the problems yourself.
Further, solutions must be written in your own words.

1. Hermite-Biehler (HB) theorem. Using the argument principle from complex analysis, prove the
following. Given f, g ∈ R[t], the polynomial g+ if has all its roots in H−, the open lower half-plane, if
and only if f, g are real-rooted with f ≪ g strictly. (Hint: When I say argument principle here I mean
you should use the following. Suppose f is holomorphic in C, C is a closed simple counterclockwise curve
in C, and f is never zero on C. Then the number of zeros of f (counting multiplicity) inside C is equal
to the winding number of f(C) about 0 (see https://en.wikipedia.org/wiki/Winding_number).
That is, the number of zeros is equal to the (signed) number of times the closed curve f(C) winds
around 0. That said, consider a semicircular curve C given by [−R,R]∪{R · eiθ : θ ∈ [−π, 0]} for large
R.)

2. Hermite-Kakeya-Obreschkoff (HKO) theorem. Given f, g ∈ R[t], prove that af + bg is real-
rooted for all a, b ∈ R if and only if f, g are real-rooted with either f ≪ g or g ≪ f . (Hint: For the

=⇒ direction, consider the real solutions to the equation f(t)
g(t) = c for any given c ∈ R. For the ⇐=

direction, draw some plots of the two polynomials as functions.)

3. Use the HKO theorem to prove that if V ⊆ R[t] is a real linear subspace consisting only of real-rooted
polynomials, then the dimension of V is at most two.

4. Use the previous exercise and the Hermite-Biehler theorem to prove that if V ⊆ C[t] is a complex linear
subspace consisting only of stable polynomials, then the dimension of V is at most one.

5. Use the previous 2 exercises to complete the proofs of the complex and real BB characterizations in
the univariate case. That is, show that if T ∈ L(Cd[x],C[x]) preserves stability and Symbd[T ](x, z) is
not stable, then the image of T is a complex linear space of stable polynomials of dimension at most
one. Further, show that if T ∈ L(Rd[x],R[x]) preserves real-rootedness and neither Symbd[T ](x, z)

1

https://en.wikipedia.org/wiki/Winding_number


nor Symbd[T ](−x, z) is real stable, then the image of T is a real linear space of stable polynomials of
dimension at most two. (Hint: Remember that we consider the zero polynomial to be both stable and
real-rooted for these characterizations.)

6. Given multivariate f, g ∈ R[x], we say f ≪ g whenever f(a · t + b) ≪ g(a · t + b) for all a ∈ Rn
>0

and b ∈ Rn. Prove analogous results to the above exercises for the multivariate case, and use this to
complete the proofs of the complex and real BB characterizations in the general case.

7. Given real-rooted f, g, h ∈ R[t] with positive leading coefficients such that f ≪ g and f ≪ h, show
that ag + bh is real-rooted for all a, b ≥ 0. Does this result extend to the case where f, g, h do not
necessarily have positive leading coefficients?

8. Given p ∈ C[t] of degree d with all roots on the unit circle, prove that up to scalar the coefficients of
p satisfy pk = pd−k for all k. What is the analogous result if “unit circle” is replaced by “real line”,
and how are these two results related? Prove versions of the HB and HKO theorems which hold for
polynomials with roots on the unit circle.

2 Stability preservers

2.1 Exercises

1. Prove that if p ∈ C[x] is homogeneous of degree d and stable, then all coefficients of p are non-negative
up to complex scalar.

2. Define a homogenization operator on Rλ[x1, . . . , xn] via

T : xµ 7→ xµy|λ|−|µ|,

where |µ| = µ1 + · · ·+µn and y is a single variable. Use the BB characterization to prove that T does
not preserve stability for any d, n.

3. Prove that if p ∈ R[x] has non-negative coefficients, then its homogenization (of any fixed degree) is
stable. (Hint: This is a bit of a challenge, use [Ren06] to prove it. Or find a proof that I don’t know!)
Note how this demonstrates a possible failing of the BB characterization: it cannot give more precise
information about preservers for polynomials with non-negative coefficients.

4. Consider the partial derivative as an operator on spaces ∂t : Rd[t] → Rd−1[t]. Let ωd : Rd[t] → Rd[t]
be the map given by ωd(p) = td · p(t−1). Recall the definition of ∂̃t : Rd[t] → Rd−1[t], given by

∂̃t(p) = ωd−1[∂t(ωd[p])].

Use the BB characterization to show that α∂t+∂̃t preserves stability for any α ∈ H+, and that a∂t+b∂̃t
preserves real-rootedness for any a, b ∈ R. Use this and some other exercises in this HW to demonstrate
some relationship between the roots of ∂tp and ∂̃tp when p is real-rooted.

5. Given p, q ∈ Rd[t], define

[p⊞d q](t) :=
1

d!

d∑
k=0

∂k
t p(x) · ∂d−k

t q(0).

Prove that for any real-rooted q ∈ Rd[t], the linear operator p 7→ p ⊞d q preserves real-rootedness.
Construct a linear differential operator (of the form

∑m
k=0 ck∂

k
t ) which preserves real-rootedness on

Rd[t] for some d, but doesn’t preserve real-rootedness on R[t]. Is there a family of linear differential
operators which preserve real-rootedness on Rd[t] but not on Rd+1[t] for all d?
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6. Let P : R(d,d)[x, y] → Rd[t] be a linear operator defined on monomials via

P (xjyk) := tj ⊞d tk,

where ⊞d is defined in the previous exercise. Prove or disprove: P maps real stable polynomials to
real-rooted polynomials. How does this relate to the previous exercise?

7. Define a multivariate version ⊞λ of the operator considered in the previous two exercises, so that ⊞λ

preserves real stability.

8. Given a graph G = (V,E), a k-factor of G is a spanning subgraph of G in which all vertices have
degree exactly k. Note that a 1-factor of a graph is a perfect matching. Let a weak k-factor be a
subgraph of G in which all vertices have degree k or 0. Prove or disprove: There is a way to define
real stable polynomials for k-factors or weak k-factors of a graph for some k ≥ 2. (Note that you may
need potentially to flip signs or something to make this work, or it may not work at all. This question
is more open-ended.)

3 SL2(C)-action on polynomials

Let Cλ[xy] = Cλ[x1
y1, . . . ,

xn
yn] denote the linear space of polynomials which are homogeneous in (xi, yi) of

degree λi for all i ∈ [n] (including the zero polynomial). We will more succintly write these spaces of
polynomials as Cλ[v1, . . . ,vn], where vi ∈ C2 for all i ∈ [n], and we consider p ∈ Cλ[v1, . . . ,vn] to have
zeros in (C2)n. We will not use this, but note that the homogeneity properties of p mean that the zeros
of p can be considered to be elements of (CP1)n, where CP1 is one-dimensional complex projective space
(which is naturally isomorphic to the Riemann sphere). Let H : Cλ[x1, . . . , xn] → Cλ[v1, . . . ,vn] denote the
appropriate per-variable homogenization map.

Given ϕ = (ϕ1, . . . , ϕn) ∈ SLn
2 (C), we define an action of SLn

2 (C) on p ∈ Cλ[v1, . . . ,vn] via:

ϕ · p = p(ϕ−1
1 v1, . . . , ϕ

−1
n vn),

where the vi are considered to be column vectors. We also define ϕ · (v1, . . . ,vn) = (ϕ1v1, . . . , ϕnvn)

3.1 Exercises

If you get stuck on the first few exercises, then restrict to the n = 1 (bivariate homogeneous) case. The
general case follows straightforwardly from this case.

1. Given p ∈ Cλ[x1, . . . , xn], prove that p has a zero at ( r1s1 , . . . ,
rn
sn
) if and only if H(p) has a zero at

(r1s1, . . . ,
rn
sn), including when si = 0 for some values of i.

2. Prove that p 7→ ϕ · p, as defined above, is a well-defined group action of SLn
2 (C) on Cλ[v1, . . . ,vn].

3. Given p ∈ Cλ[v1, . . . ,vn] and ϕ ∈ SLn
2 (C), prove that (v1, . . . ,vn) is a zero of p if and only if ϕ ·

(v1, . . . ,vn) is a zero of ϕ · p.

4. Given p ∈ Cd[xy] and ϕ ∈ SL2(C), define [ac] = ϕ−1[10]. We have

(ϕ−1 ◦ ∂x ◦ ϕ) · p = (a∂x + c∂y)p.

(Recall that we needed this lemma to prove Laguerre’s theorem.)

5. Given polynomials p, q ∈ Cd[xy], show that (up to non-zero scalar) the bilinear form of Grace’s theorem
can be given by

⟨H−1(p), H−1(q)⟩ = (∂x∂w − ∂y∂z)
dp(xy)q(

z
w).

Here we are identifying Cd[x] and Cd[xy] via the map H.
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6. Multivariate Grace’s theorem. Given polynomials p, q ∈ Cλ[xy] = Cλ[x1
y1, . . . ,

xn
yn], prove that if

H−1(p) is Hn
+-stable and H−1(q) is H−

n
-stable, then

⟨H−1(p), H−1(q)⟩ :=

[
n∏

i=1

(∂xi∂wi − ∂yi∂zi)
λi

]
p(xy)q(

z
w) ̸= 0.

(Hint: This is a harder problem. The quickest way is likely to show that ∂x∂w − ∂y∂z preserves
(H+ × H−)-stability on C(d,d)[xy,

z
w], not allowing the zero polynomial. However, we have not really

discussed too much in the course how to disallow the zero polynomial. See [Lea17] for more discussion
on this problem.)

7. Prove that ∂x∂w − ∂y∂z is SL2(C)-invariant. That is, given ϕ ∈ SL2(C) and f ∈ C(d,d′)[xy,
z
w], we have

(ϕ, ϕ) · [(∂x∂w − ∂y∂z)f ] = (∂x∂w − ∂y∂z)[(ϕ, ϕ) · f ].

Note that this implies the multivariate Grace’s theorem of the previous exercise generalizes to any
product of circular regions and the product of their complements.

8. Prove or disprove: The action of SL2(R) preserves the interlacing property on univariate polynomials.
That is, if f ≪ g then ϕ · f ≪ ϕ · g for all ϕ ∈ SL2(R). Here we are implicitly identifying Rd[x] and
Rd[xy] via the map H. (Hint: What makes this interesting is what happens to the sign of the leading
coefficient when the action of some ϕ causes roots to “pass through infinity”.)
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arXiv preprint arXiv:1706.06168 (2017).

[Ren06] James Renegar, Hyperbolic programs, and their derivative relaxations, Foundations of Computa-
tional Mathematics 6 (2006), no. 1, 59–79.

[Wag11] David Wagner, Multivariate stable polynomials: Theory and applications, Bulletin of the American
Mathematical Society 48 (2011), no. 1, 53–84.

4


	Interlacing polynomials and the BB characterization
	Exercises

	Stability preservers
	Exercises

	`3́9`42`"̇613A``45`47`"603ASL2(C)-action on polynomials
	Exercises


