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The matrix scaling problem

Let M be an m × n matrix with R+ entries, and fix r ∈ Rm
+ and c ∈ Rn

+.

Definition: A scaling of M is given by multiplying M on the left and
right by diagonal matrices with positive entries:

scaling = AMB =⇒ (AMB)ij = aiimijbjj .

Question: Given M, do there exist such A,B such that the row sums and
column sums of AMB are r and c respectively?

Easy: Achieve rows sums by letting α be the row sums of M and apply:

A := diag
( r1
α1
, . . . ,

rm
αm

)
=⇒

n∑
j=1

(AM)ij =
n∑

j=1

ri
αi
·mij = ri .

And same for the columns. But what about both at the same time?

Scaling the rows changes the column sums, and vice versa...
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Why do we care about matrix scaling?
Application: Deterministic approximation to the permanent. How?

Given an n × n matrix M, set r = c = 1. Suppose we have obtained the
matrices A,B which scale M to the correct row/column sums.

Since AMB is doubly stochastic, we can use van der Waerden bound:

1 ≥ per(AMB) ≥ n!
nn ≥ e−n (e.g., recall Cap1(p) ≥ p1 ≥

n!
nn Cap1(p)).

Now: per(AM) =
∑
σ∈Sn

n∏
i=1

(AM)i ,σ(i) =
∑
σ∈Sn

n∏
i=1

aiimi ,σ(i) = det(A) per(M).

Similar for B: per(AMB) = det(A) per(M) det(B). Therefore:

[det(A) det(B)]−1 ≥ per(M) ≥ e−n [det(A) det(B)]−1 .

This says that det(AB)−1 is an en-approximation to the permanent of M.

[Linial-Samorodnitsky-Wigderson ’00]: No capacity at the time, but
the vdW bound was already proven by Egorychev and Falikman.
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How to compute the scaling?
If we have the scaling, then we get an approximation to the permanent.

Questions: How do we compute the A,B? How do we know A,B exist?

Existence: Right off the bat, per(M) = 0 =⇒ not scalable. (per(M) = 0
is equivalent to non-existence of perfect matchings in bipartite graph.)

Problem: There exists non-scalable M with per(M) > 0.

Solution: Can almost scale when per(M) > 0 [Rothblum-Schneider ’89]:

A,B such that row-sums(AMB) = r and col-sums(AMB) = c ′

with ‖c − c ′‖ < ε for any ε.

New problem: For the case of r = c = 1 and the permanent, the vdW
bound only works for doubly stochastic matrices. How do we handle
“almost doubly stochastic” matrices? Handle this later...

First: How do we even compute A and B?
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Sinkhorn’s scaling algorithm
Given M, want to compute A,B so that AMB is almost doubly stochastic.

Sinkhorn’s algorithm is a very simple iterative algorithm for Mt :
1 Scale the columns so that col-sums(Mt+1) = 1.
2 Scale the rows so that row-sums(Mt+2) = 1 (changes col sums).
3 Repeat iterations until Mt is almost doubly stochastic.

Keep track of Mt = · · ·A6A4A2MB1B3B5 · · · , which gives A and B.

Question: How many iterations do we need?

[LSW ’00]: If per(M) > 0, then poly(n) iterations gives Mt with row
sums 1 and col sums ct such that ‖1− ct‖2

2 small (after preprocessing).

Proof idea: When ‖1− ct‖2
2 = C , iteration scales permanent by

1 + Ω(C). So big C implies big permanent improvement.

Finally: Van der Waerden-type bounds on the permanent for “close” to
doubly stochastic give the exponential approximation.
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The LSW algorithm

Given M, want to compute A,B so that AMB is almost doubly stochastic.

Main algorithm steps:
1 Preprocessing: Scale to get M1 such that per(M1) ≥ 1

nn .
2 Sinkhorn: Apply iterative scaling until ‖1− ct‖2 is small.
3 Approximation: Mt is close to doubly stochastic =⇒ ≈ en-approx.

Output: A = A2A4A6 · · · and B = B1B3B5 · · · and per(M) ≈ det(AB)−1.

Different “marginals”: Similar algorithm given in [LSW ’00].

General form of multiplicative iterative scaling algorithms:
1 Lower bound: Only need “small” number of steps to get close to DS.
2 Progress: Apply Sinkhorn until “marginals” close to DS.
3 Approximation: Once close to DS, use vdW-type approximation.

This framework works in more general operator (tensor?) scaling setting.
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Analyzing the progress step
Lemma: Given x ∈ Rn

+ such that
∑

i xi = n and ‖1− x‖2
2 = C , we have:

n∏
i=1

xi ≤ 1− C
2 + O(C3/2) =⇒ 1∏

i xi
≥ 1 + Ω(C).

Corollary: If Mt has row sums rt = 1 and column sums ct with
‖1− ct‖2

2 = εt , then 1 ≥ per(Mt+1) ≥ (1 + Ω(εt)) · per(Mt).

Proof: Note that
∑

i (ct)i =
∑

i (rt)i = n. Scaling columns gives

per(Mt+1) = per
(
Mt · diag(c−1

t )
)

= per(Mt) · 1∏
i (ct)i

.

Apply lemma to get per(Mt+1) ≥ (1 + Ω(εt)) · per(Mt).

Now: For εt ≥ 1
n3 , apply O(n4 log n) steps to get factor of:(
1 + Ω

( 1
n3

))O(n4 log n)
≈ eO(n log n) = O(nn).

Finally: Either εt becomes small or O(nn) improvement to permanent.
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The LSW algorithm with more detail
Recall the algorithm: (assuming per(M) > 0)

1 Preprocess to get per(M1) ≥ 1
nn = e−poly(n).

2 Iterate O(n4 log n) times until εt < 1
n3 or O(nn) improvement.

3 If O(nn) improvement, then 1 ≥ per(Mt) = O(1) ≈ 1.
4 Otherwise ‖1− ct‖2

2 <
1
n3 =⇒ Mt ≈ doubly stochastic.

Question: What about the last step?

Answer: [LSW ’00] gives a vdW-type approximation for close-to-DS Mt .

Generalization: Recall p(x) :=
∏n

i=1
∑n

j=1 mijxj where p is real stable
and p1 = per(M). We have:

Row sums = 1 =⇒ p(1) =
∏n

i=1
∑n

j=1 mij = 1.
Column sums = c =⇒ ∇p(1) = c.

More general question: Can we bound the coefficient p1 when real
stable p is close to being a doubly stochastic polynomial?
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Close-to-doubly stochastic real stable polynomials

Theorem (Gurvits-L ’20)
Let p ∈ R+[x1, . . . , xn] be a homogeneous polynomial of degree n with
p(1) = 1. If p is real stable and ‖1−∇p(1)‖1 < 2, then

1 ≥ Cap1(p) = inf
x>0

p(x)
x1 ≥

(
1− ‖1−∇p(1)‖1

2

)n
.

Combine with Gurvits’ theorem when ∇p(1) = c:

1 ≥ Cap1(p) ≥ p1 ≥
n!
nn · Cap1(p) ≥ n!

nn ·
(

1− ‖1− c‖1
2

)n
.

If ‖1− c‖2
2 ≤ 1

n3 , then ‖1− c‖1 ≤ 1
n . Therefore:

1 ≥ p1 ≥
n!
nn ·

(
1− 1

2n

)n
≈ n!

nn · e
− 1

2 ≥ e−n.

This gives the final piece of the algorithm for approximating per(M).
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The operator scaling problem

Let T be a linear operator from m ×m matrices to n × n matrices which
maps PSD matrices to PSD matrices.

Definition: A scaling of T is given by PD matrices A,B:

scaling = A1/2T (B1/2XB1/2)A1/2, another PSD-preserving operator.

Question: Given T , do there exist A,B to scale to “doubly stochastic”?

Doubly stochastic operator: T (Im) = In and T ∗(In) = Im ( =⇒ m = n).

Translated to matrices: M · 1 = 1 and M∗ · 1 = 1 (doubly stochastic).

As before: Easy to scale one or the other, but what about both? E.g.:

A := T (In)−1 =⇒
[
A1/2 · T · A1/2

]
(In) = In.

Scaling via A affects T ∗(In) and scaling via B affects T (In).
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Why do we care about operator scaling?
Main operators of study are completely positive (CP) operators:

T (X ) =
∑̀
k=1

M∗k X Mk =⇒ T ∗(Y ) =
∑̀
k=1

Mk X M∗k ,

where Mk are any m × n complex matrices.

Fun fact: Equivalent to (idk×k ⊗ T ) preserving PSD matrices for all k.

First idea [Gurvits ’04]: There is an (approximate) scaling if and only if
T is rank non-decreasing: rank(T (X )) ≥ rank(X ) for all X � 0.

Matrix case: “Rank non-decreasing” = #{(Mx)i = 0} ≥ #{xi = 0} for
all x ∈ Rn

+. This is Hall marriage condition ⇐⇒ #pm = per(M) > 0.

I.e.: Rank non-decreasing is operator version of Hall marriage condition.

Summary: Scalability of T is related to some “non-singularity property”
of the matrices M1, . . . ,M`.
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Why do we care about operator scaling?
Last slide: T is scalable to DS iff rank(T (X )) ≥ rank(X ) for all X � 0.

CP operator: T (X ) =
∑̀
k=1

M∗k X Mk =⇒ T ∗(X ) =
∑̀
k=1

Mk X M∗k .

Why do we care about rank non-decreasing? Equivalent properties
(see [Garg-Gurvits-Oliveira-Wigderson ’15], Theorem 1.4):

1 rank(T (X )) ≥ rank(X ) for all X � 0.
2 For some B1, . . . ,B`, the matrix

∑`
k=1 Bk ⊗Mk is non-singular.

3 For some k, the polynomial det
(∑`

k=1 Xk ⊗Mk
)

is not identically 0
where Xk is a k × k matrix of variables.

4 The “polynomial” Det
(∑`

k=1 Mkxk
)

is not identically 0, where
x1, . . . , x` are non-commuting variables (non-commutative “Det”).

5 The tuple (M1, . . . ,M`) is not in null-cone of left-right action of SL2
n.

#4: (non-commutative) polynomial identity testing, (NC)PIT:
When is the determinant of a matrix of linear forms identically zero?
[Kabanets-Impagliazzo]: Poly-time PIT =⇒ complexity lower bounds.
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Gurvits’ algorithm

Sinkhorn’s algorithm: Alternate scaling rows and columns.

Gurvits’ algorithm: Alternate scaling T and T ∗:

· · ·A1/2
3 A1/2

1 T
(
· · ·B1/2

4 B1/2
2 X B1/2

2 B1/2
4 · · ·

)
A1/2

1 A1/2
3 · · ·

How? Pick A = T (In)−1 for
[
A1/2 T A1/2

]
(In) = In. Pick B = T ∗(In)−1:

[
T
(
B1/2 X B1/2

)]∗
(In) =

[∑̀
k=1

M∗k B1/2XB1/2Mk

]∗
(In)

=
[∑̀

k=1
B1/2MkXM∗k B1/2

]
(In)

= B1/2 · T ∗(In) · B1/2 = In.

That is: T (In) = In after odd steps and T ∗(In) = In after even steps.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 16 / 22



The general form of the algorithm
Recall the form, for some “measure of progress” µ:

1 Preprocess: Scale to T1 such that µ(T1) ≥ e−poly(n).
2 Iterations: Iterate poly(n) times, improving µ(Tt) multiplicatively by

1 + 1
O(poly(n)) each time based on “closeness of marginals”.

3 Approximation: Once “marginals” are close to doubly stochastic, we
can approximate. (Approximate what?)

Matrix case: µ = permanent. Could have also used µ = Cap1, since p is
doubly stochastic iff Cap1(p) = 1 and Cap1(p) ≤ 1 otherwise.

Gurvits: Generalize permanent to “quantum permanent” (next slide).

Enough for us: Only need [“marginals” close to doubly stochastic] to
imply [we can (almost) scale to doubly stochastic]. Why?

Recall: Simply knowing whether that T is (almost) scalable implies

Det
(∑̀

k=1
Mkxk

)
6≡ 0 where the variables are non-commutative (NC-PIT).
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Measure of progress: Quantum permanent

Gurvits idea to generalize permanent: “Quantum permanent”.

Recall: per(M) = ∂x1 · · · ∂xn |x=0
∏n

i=1
∑n

j=1 mijxj .

Now: Qper(T ) := det(∂X )|X=0 det(T (X )) where X is matrix of variables.

Recall: 1 ≥ per(M) ≥ n!
nn for doubly stochastic M.

Problem: There is doubly stochastic T such that Qper(T ) = 0:

T (X ) := 1
2 (M1XM∗1 + M2XM∗2 + M3XM∗3 )

where M1 =
[ 0 1 0
−1 0 0
0 0 0

]
, M2 =

[ 0 0 1
0 0 0
−1 0 0

]
, and M3 =

[ 0 0 0
0 0 1
0 −1 0

]
. These matrices

span the 3× 3 skew-symmetric matrices, all of which are singular.

Upshot: Quantum permanent measures PIT, while DS measures NC-PIT.

Related: det
([

0 z w
−z 0 1
−w −1 0

])
≡ 0, but Det

([
0 z w
−z 0 1
−w −1 0

])
= zw − wz .
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Matrix capacity
Last slide: Quantum permanent is not a good measure of progress.

What about some kind of capacity? Matrix capacity:

Cap(T ) := inf
X�0

det(T (X ))
det(X ) .

Easy: If T (In) = In, then Cap(T ) ≤ 1.

[Gurvits ’04]: If T (In) = In, then T is doubly stochastic iff Cap(T ) = 1.

[Gurvits ’04]: The following are equivalent for CP map T .
1 Cap(T ) > 0.
2 T is rank non-decreasing.
3 For all ε > 0, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ ε for t � 0.
4 For some t, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ 1

n+1 .

This generalizes the matrix case. So to decide rank-nondecreasing, we just
need to scale T to be 1

n+1 -close to doubly stochastic.
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Matrix capacity and the scaling algorithm
Matrix case: Polynomial capacity computable via convex programming.
Also: Cap1(p) > 0 ⇐⇒ per(M) > 0 for p ∼ M by Gurvits’ theorem.

Operator case: Close to doubly stochastic via scaling algorithm.
Then: T is almost scalable iff Cap(T ) > 0 iff T rank non-decreasing iff...
Unclear: How to compute capacity directly via convex program?

Analysis of algo [GGOW ’15]: Let T (X ) =
∑`

k=1 M∗k X Mk .
1 “Preprocessing”: If M1, . . . ,M` have integer entries and

Cap(T ) > 0, then Cap(T ) ≥ 1
n2n .

2 Progress: For Tt(In) = In and ‖T ∗(In)− In‖F = ε, we have
Cap(Tt+1) ≥ eΩ(

√
ε) · Cap(Tt).

3 Termination: When ε ≤ 1
n+1 , we know that T is (almost) scalable.

For ε > 1
n+1 , we have

[
eΩ( 1√

n+1 )
]O(n

√
n log n)

= n2n =⇒ poly # iterations.

Crucial: After poly steps, either close to DS or Cap(T ) = 0.
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Generalizations and other questions
GGOW algorithm: Used for scaling to doubly stochastic.

Other marginals [Franks ’18]: T (In) = P and T ∗(In) = Q.
Generalizes of matrix capacity to CapA(T ). When A = diag(a):

denominator of CapA =
n∏

j=1
det(X[j])aj−aj+1 ,

where X[j] is the top-left j × j submatrix and aj non-increasing.
Seems different than continuous capacity. Connection?
Seems related to the Gelfand-Tsetlin polytope. Connection?

Tensor scaling [Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson]:
Given φ ∈ V⊗m, act on each tensor component iteratively in succession:∑

i
(vi ⊗wi ⊗· · · )→

∑
i

(A1vi ⊗wi ⊗· · · )→
∑

i
(A1vi ⊗A2wi ⊗· · · )→ · · ·

Invariant theory connections: Next week or the week after.
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