Flow / transportation polytope volume bounds via polynomial capacity

Jonathan Leake

(joint with Petter Brändén and Igor Pak)

Technische Universität Berlin

April 6th, 2021

- Polynomial capacity
 - Used to bound/approximate coefficients of log-concave polynomials
- 2 Log-concave polynomials
 - Notions of log-concavity, examples, and capacity bounds
- 3 Contingency tables (CT)
 - Generating function is log-concave
 - Approximately count CTs using capacity
- Flow / transportation polytopes
 - CTs are the integral points of these polytopes
 - Limit CT capacity bounds to obtain volume bounds

- Polynomial capacity
 - Used to bound/approximate coefficients of log-concave polynomials
- 2 Log-concave polynomials
 - Notions of log-concavity, examples, and capacity bounds
- 3 Contingency tables (CT)
 - Generating function is log-concave
 - Approximately count CTs using capacity
- 4 Flow / transportation polytopes
 - CTs are the integral points of these polytopes
 - Limit CT capacity bounds to obtain volume bounds

Polynomial capacity

Let $\mathbb{R}_+[x]$ denote the set of *n*-variate polynomials with all coefficients ≥ 0 .

Definition: Given $p \in \mathbb{R}_+[x]$ and $\alpha \in \mathbb{R}_+^n$, we define

$$\mathsf{Cap}_{\boldsymbol{\alpha}}(p) := \inf_{\boldsymbol{x} > 0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\boldsymbol{\alpha}}} = \inf_{x_1, x_2, \dots, x_n > 0} \frac{p(x_1, x_2, \dots, x_n)}{x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}}.$$

Intuitions/interpretations of capacity:

- **① Combinatorial:** $Cap_{\alpha}(p) > 0$ iff $\alpha \in Newt(p) = hull(supp(p))$.
- **2 Entropic:** $\log \operatorname{Cap}_{\alpha}(p)$ is the entropy of a special distribution on $\operatorname{supp}(p)$ with expectation α .
- **3 Convexity/optimization:** $\log \operatorname{Cap}_{\alpha}(p)$ can be converted into a convex program, and can be approximated if p is easy to evaluate.

Key use: Approximation of polynomial coefficients:

$$\mathsf{Cap}_{m{\kappa}}(p) \geq \langle m{x}^{m{\kappa}}
angle p(m{x}) \geq K(m{\kappa}) \cdot \mathsf{Cap}_{m{\kappa}}(p).$$

Key idea: We use evaluations of p to approximate coefficients of p.

Gurvits' original application: Computing permanents

Given a matrix M with entries in \mathbb{R}_+ , define the **permanent** of M:

$$\operatorname{\mathsf{per}}(M) := \sum_{\sigma \in \mathcal{S}_n} \prod_{i=1}^n m_{i,\sigma(i)}.$$

Barvinok (I think?): "Like the determinant, but simpler." Hilarious!

Why? Exact permanent computation is the canonical #P-hard problem.

Already #P-hard for 0-1 matrices, which is equivalent to counting perfect matchings of a bipartite graph.

Relation to capacity? Defining $q(\mathbf{x}) := \prod_{i=1}^n \sum_{j=1}^n m_{ij} x_j$, we have

$$\operatorname{per}(M) = \langle x_1 x_2 \cdots x_n \rangle q(\boldsymbol{x}) = \partial_{x_1} \partial_{x_2} \cdots \partial_{x_n} q(\boldsymbol{x}).$$

Upshot: q is easy to evaluate, but the coefficients are hard to compute.

Coefficient approximation

Last slide: Given M with \mathbb{R}_+ entries, we define $q(\mathbf{x}) = \prod_{i=1}^n \sum_{j=1}^n m_{ij} x_j$ which implies $per(M) = \langle \mathbf{x}^1 \rangle q(\mathbf{x})$.

Theorem (Gurvits '08)

Given any d-homogeneous, n-variate, "strongly log-concave" (SLC) $p \in \mathbb{R}_+[x]$ and any $\kappa \in \text{supp}(p)$, we have

$$\mathsf{Cap}_{m{\kappa}}(m{p}) \geq \langle m{x}^{m{\kappa}}
angle m{p}(m{x}) \geq inom{d}{m{\kappa}} rac{\kappa_1^{\kappa_1} \cdots \kappa_n^{\kappa_n}}{d^d} \, \mathsf{Cap}_{m{\kappa}}(m{p}).$$

Upshot: Coefficient approximation via capacity (a convex program).

Apply to q with $\kappa = 1$: $Cap_1(q) \ge per(M) \ge \frac{n!}{n^n} \cdot Cap_1(q)$.

Next: Coefficients of generating functions count combinatorial objects.

Corollary: If "SLC" generating function, we can approximately count.

What is "SLC"? What other classes of log-concave polynomials?

- Polynomial capacity
 - Used to bound/approximate coefficients of log-concave polynomials
- 2 Log-concave polynomials
 - Notions of log-concavity, examples, and capacity bounds
- Contingency tables (CT)
 - Generating function is log-concave
 - Approximately count CTs using capacity
- 4 Flow / transportation polytopes
 - CTs are the integral points of these polytopes
 - Limit CT capacity bounds to obtain volume bounds

Log-concave polynomials

SLC / Completely log-concave / Lorentzian (homogeneous):

- **E.g.:** $\det(\sum_i x_i A_i)$ for PSD A_i , $\operatorname{vol}(\sum_i x_i K_i)$ for compact convex K_i , matroid basis generating polynomials [ALOV '18, BH '19], products of linear forms with non-negative entries, more?
- **Hot:** Hodge theory for matroids [AHK '15], Mason's conjectures [ALOV '18, BH '19]
- $\sum_{k=0}^{d} c_k x^k y^{d-k}$ is SLC \iff $\left(\frac{c_k}{\binom{d}{k}}\right)^2 \ge \left(\frac{c_{k-1}}{\binom{d}{k-1}}\right) \left(\frac{c_{k+1}}{\binom{d}{k+1}}\right)$.

Denormalized Lorentzian (homogeneous): Multiplying the coefficients of p by multinomial coefficients gives a Lorentzian polynomial.

- **E.g.:** Schur polynomials [HMMD '19], polymatroid basis generating polynomials, contingency tables generating polynomials, more?
- $\sum_{k=0}^{d} c_k x^k y^{d-k}$ is DL $\iff c_k^2 \ge c_{k-1} \cdot c_{k+1}$.

Bonus: Both classes preserved under taking products of polynomials.

Capacity and denormalized Lorentzian polynomials

Before: Coefficient bounds for SLC polynomials via capacity.

Theorem (Brändén-L-Pak '20)

Given any d-homogeneous, n-variate, denormalized Lorentzian (DL) $p \in \mathbb{R}_+[\mathbf{x}]$ and any $\kappa \in \text{supp}(p)$, we have

$$\mathsf{Cap}_{\kappa}(p) \geq \langle \pmb{x}^{\kappa} \rangle p(\pmb{x}) \geq e^{-(n-1)} \left[\prod_{i=2}^{n} \frac{1}{\kappa_i + 1} \right] \mathsf{Cap}_{\kappa}(p).$$

Now: We can approximate the coefficients of DL polynomials.

- Coefficients of Schur polynomials. Applications?
- Counting contingency tables. **Next section.**

(**Quick comment:** Starting at i = 2 is not a typo.)

- Polynomial capacity
 - Used to bound/approximate coefficients of log-concave polynomials
- 2 Log-concave polynomials
 - Notions of log-concavity, examples, and capacity bounds
- 3 Contingency tables (CT)
 - Generating function is log-concave
 - Approximately count CTs using capacity
- 4 Flow / transportation polytopes
 - CTs are the integral points of these polytopes
 - Limit CT capacity bounds to obtain volume bounds

Contingency tables

Definition: Given $\alpha \in \mathbb{N}^m$ and $\beta \in \mathbb{N}^n$, a **contingency table (CT)** is an $m \times n$ matrix of non-negative integers such that the row sums and column sums are α and β respectively (α and β called the **marginals** of M).

Examples: Contingency tables with $\alpha = (1,4)$ and $\beta = (1,2,2)$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

The permutation matrices are the contingency tables with lpha=eta=1.

Generating function: Fix matrix M, and to entry m_{ij} associate $(x_i y_j)^{m_{ij}}$. M has marginals (α, β) iff $\prod_{i=1}^m \prod_{j=1}^n (x_i y_j)^{m_{ij}} = \mathbf{x}^{\alpha} \mathbf{y}^{\beta}$. Therefore:

$$g(\mathbf{x},\mathbf{y}) := \prod_{i=1}^m \prod_{j=1}^n \frac{1}{1 - x_i y_j} = \prod_{i=1}^m \prod_{j=1}^n \sum_{k=0}^\infty (x_i y_j)^k = \sum_{\alpha,\beta} \mathsf{CT}(\alpha,\beta) \cdot \mathbf{x}^\alpha \mathbf{y}^\beta,$$

where $CT(\alpha, \beta)$ counts contingency tables with the given marginals.

Capacity bounds for contingency tables

Goal: Apply capacity bounds to generating function.

Problems: Not a polynomial, not homogeneous. We can fix it though:

$$\prod_{i=1}^{m} \prod_{j=1}^{n} \sum_{k=0}^{\infty} (x_i y_j)^k \rightarrow \prod_{i=1}^{m} \prod_{j=1}^{n} \sum_{k=0}^{K} x_i^k y_j^{K-k} = \sum_{\alpha,\beta} \mathsf{CT}_K(\alpha,\beta) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{mK \cdot 1 - \beta},$$

where $\mathsf{CT}_{\mathcal{K}}(\alpha,\beta)$ is the number of tables with entries bounded by \mathcal{K} .

Upshot: New generating function is a product of bivariate homogeneous polynomials $\sum_{k=0}^{K} x_i^k y_i^{K-k}$ with log-concave coefficients.

Therefore: The new generating function is denormalized Lorentzian.

Finally: Apply capacity bound, then un-twist and send $K \to \infty$ to get:

$$\mathsf{CT}(oldsymbol{lpha},oldsymbol{eta}) \geq \mathsf{e}^{-(m+n-1)} \left[\prod_{i=2}^m rac{1}{lpha_i+1} \prod_{j=1}^n rac{1}{eta_j+1}
ight] \mathsf{Cap}_{(oldsymbol{lpha},oldsymbol{eta})}(g).$$

- Polynomial capacity
 - Used to bound/approximate coefficients of log-concave polynomials
- 2 Log-concave polynomials
 - Notions of log-concavity, examples, and capacity bounds
- 3 Contingency tables (CT)
 - Generating function is log-concave
 - Approximately count CTs using capacity
- Flow / transportation polytopes
 - CTs are the integral points of these polytopes
 - Limit CT capacity bounds to obtain volume bounds

Transportation/flow polytopes

Definition: For $\alpha \in \mathbb{N}^m$, $\beta \in \mathbb{N}^n$, the **transportation polytope** $\mathcal{T}(\alpha, \beta)$ is the set of all $m \times n$ matrices with \mathbb{R}_+ entries and marginals α and β . (**Flow polytopes** have extra constraint that entries are bounded by k_{ij} .)

That is: Contingency tables are the integer points of these polytopes.

Idea: We can extract volume from $CT(M\alpha, M\beta)$ as $M \to \infty$.

How? If h_P is the Ehrhart polynomial of an integral polytope P, then $h_P(M)$ counts integer points in $M \cdot P$ for $M \in \mathbb{N}$. **So:**

$$h_{\mathcal{T}(\alpha,\beta)}(M) = h_{\mathcal{T}(M\alpha,M\beta)}(1) = \mathsf{CT}(M\alpha,M\beta).$$

Well known: The leading coefficient of h_P is vol(P).

Therefore: Since the dimension of $\mathcal{T}(\alpha,\beta)$ is (m-1)(n-1), we have

$$\operatorname{vol}(\mathcal{T}(\alpha,\beta)) = \lim_{M \to \infty} \frac{\operatorname{CT}(M\alpha,M\beta)}{M^{(m-1)(n-1)}}.$$

Next: We can bound $vol(\mathcal{T}(\alpha, \beta))$ by limiting our capacity bound on CTs.

Volume bounds via capacity

Last slide:
$$\operatorname{vol}(\mathcal{T}(\alpha,\beta)) = \lim_{M \to \infty} \frac{\operatorname{CT}(M\alpha,M\beta)}{M^{(m-1)(n-1)}}.$$

From before, we have our capacity bound:

$$\mathsf{CT}(M\alpha, M\beta) \geq e^{-(m+n-1)} \left[\prod_{i=2}^m \frac{1}{M\alpha_i + 1} \prod_{j=1}^n \frac{1}{M\beta_j + 1} \right] \mathsf{Cap}_{(M\alpha, M\beta)}(g)$$

Now add in the limit:

$$\lim_{M \to \infty} \frac{\mathsf{CT}(M\alpha, M\beta)}{M^{mn - (m+n-1)}} = e^{-(m+n-1)} \left[\prod_{i=2}^{m} \frac{1}{\alpha_i} \prod_{j=1}^{n} \frac{1}{\beta_j} \right] \lim_{M \to \infty} \frac{\mathsf{Cap}_{(M\alpha, M\beta)}(g)}{M^{mn}}$$

Last piece:

$$\lim_{M\to\infty} \frac{\mathsf{Cap}_{(M\alpha,M\beta)}(g)}{M^{mn}} = \inf_{0<\mathbf{x},\mathbf{y}<1} \frac{\prod_{i=1}^m \prod_{j=1}^n \frac{-1}{\log(x_iy_j)}}{\mathbf{x}^{\alpha}\mathbf{y}^{\beta}}.$$

This can also be converted into a convex program.

Volume bounds via capacity

Theorem (Brändén-L-Pak '20)

Given $\alpha \in \mathbb{N}^m$ and $\beta \in \mathbb{N}^n$, the volume of $\mathcal{T}(\alpha,\beta)$ can be bounded via

$$\operatorname{vol}(\mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta})) \geq e^{-(m+n-1)} \left[\prod_{i=2}^m \frac{1}{\alpha_i} \prod_{j=1}^n \frac{1}{\beta_j} \right] \cdot \inf_{0 < \boldsymbol{x}, \boldsymbol{y} < 1} \frac{\prod_{i=1}^m \prod_{j=1}^n \frac{-1}{\log(x_i y_j)}}{\boldsymbol{x}^{\boldsymbol{\alpha}} \boldsymbol{y}^{\boldsymbol{\beta}}}.$$

The same holds for the flow polytope with $\frac{-1}{\log(x_iy_j)}$ replaced by $\frac{(x_iy_j)^{k_{ij}}-1}{\log(x_iy_j)}$.

Corollary: For $\alpha = \alpha_0 \cdot \mathbf{1}$ and $\beta = \beta_0 \cdot \mathbf{1}$, we obtain a **closed-form** bound.

For the **Birkhoff polytope** with $\alpha = \beta = 1$ and m = n:

$$\operatorname{vol}(\mathcal{T}_{1,1}) \geq \frac{(en)^{(n-1)^2}}{n^{2n^2-2n+1}} = \frac{e^{(n-1)^2}}{n^{n^2}} = e^{-n^2 \log n + n^2 - 2n + 1}.$$

First two terms coincide with the true asymptotics [Canfield-McKay '07].

Questions?

(And thanks for listening!)